Warped Products and Conformal Boundaries of Cat(0)-spaces

نویسنده

  • STEPHEN M. BUCKLEY
چکیده

We discuss the conformal boundary of a warped product of two length spaces and provide a method to calculate this in terms of the individual conformal boundaries. This technique is then applied to produce CAT(0)-spaces with complicated conformal boundaries. Finally we prove that the conformal boundary of an Hadamard n-manifold is always simply connected for n ≥ 3, thus providing a bound for the level of complication of the boundary of such a manifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cat(0) and Cat(−1) Fillings of Hyperbolic Manifolds

We give new examples of hyperbolic and relatively hyperbolic groups of cohomological dimension d for all d ≥ 4 (see Theorem 2.13). These examples result from applying CAT(0)/CAT(−1) filling constructions (based on singular doubly warped products) to finite volume hyperbolic manifolds with toral cusps. The groups obtained have a number of interesting properties, which are established by analyzin...

متن کامل

On Non-locally Connected Boundaries of Cat(0) Spaces

In this paper, we study CAT(0) spaces with nonlocally connected boundary. We give some condition of a CAT(0) space whose boundary is not locally connected.

متن کامل

On Splitting Theorems for Cat(0) Spaces and Compact Geodesic Spaces of Non-positive Curvature

In this paper, we prove some splitting theorems for CAT(0) spaces on which some product group acts geometrically and show a splitting theorem for compact geodesic spaces of nonpositive curvature. A CAT(0) group Γ is said to be rigid, if Γ determines the boundary up to homeomorphism of a CAT(0) space on which Γ acts geometrically. Croke and Kleiner have constructed a non-rigid CAT(0) group. As a...

متن کامل

Willmore-chen Tubes on Homogeneous Spaces in Warped Product Spaces

We present a new method to obtain Willmore-Chen submanifolds in spaces endowed with warped product metrics and fibers being a given homogeneous space. The main points are: First the invariance of the variational problem of WillmoreChen with respect to the conformal changes in the ambient space metric. Second, the principle of symmetric criticality which allows us to relate the problem with that...

متن کامل

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009